Bi-Phospho-Syk(Y525/526) Antibody
Peptide Affinity Purified Rabbit Polyclonal Antibody (Pab)
Catalog # AP3271A-200 µl

Specification

<table>
<thead>
<tr>
<th>Bi-Phospho-Syk(Y525/526) Antibody - Product info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
</tr>
<tr>
<td>Primary Accession</td>
</tr>
<tr>
<td>Other Accession</td>
</tr>
<tr>
<td>Reactivity</td>
</tr>
<tr>
<td>Predicted</td>
</tr>
<tr>
<td>Host</td>
</tr>
<tr>
<td>Clonality</td>
</tr>
<tr>
<td>Isotype</td>
</tr>
<tr>
<td>Calculated MW</td>
</tr>
</tbody>
</table>

Gene ID 6850

Other Names
Tyrosine-protein kinase SYK, Spleen tyrosine kinase, p72-Syk, SYK

Target/Specificity
This Syk Antibody is generated from rabbits immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid residues surrounding Y525/526 of human Syk.

Dilution
WB: 1:250
IHC-P: 1:50~100

Format
Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification.

Storage
Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles.

Precautions
Bi-Phospho-Syk(Y525/526) Antibody is for research use only and not for use in diagnostic or therapeutic procedures.

Western blot analysis of lysates from Raji cell line, untreated or treated with TPA, 200nM, 30min, using 457167101(Cat. #AP3271a)(upper) or Tubulin (lower).

Formalin-fixed and paraffin-embedded human cancer tissue reacted with the primary antibody, which was peroxidase-conjugated to the secondary antibody, followed by AEC staining. This data demonstrates the use of this antibody for immunohistochemistry; clinical relevance has not been evaluated. BC = breast carcinoma; HC = hepatocarcinoma.
maturation, platelet activation and vascular development. Assembles into signaling complexes with activated receptors at the plasma membrane via interaction between its SH2 domains and the receptor tyrosine-phosphorylated ITAM domains. The association with the receptor can also be indirect and mediated by adapter proteins containing ITAM or partial hemITAM domains. The phosphorylation of the ITAM domains is generally mediated by SRC subfamily kinases upon engagement of the receptor. More rarely signal transduction via SYK could be ITAM-independent. Direct downstream effectors phosphorylated by SYK include VAV1, PLCG1, PI-3-kinase, LCP2 and BLNK. Initially identified as essential in B-cell receptor (BCR) signaling, it is necessary for the maturation of B-cells most probably at the pro-B to pre-B transition. Activated upon BCR engagement, it phosphorylates and activates BLNK an adapter linking the activated BCR to downstream signaling adapters and effectors. It also phosphorylates and activates PLCG1 and the PKC signaling pathway. It also phosphorylates BTK and regulates its activity in B-cell antigen receptor (BCR)-coupled signaling. In addition to its function downstream of BCR plays also a role in T-cell receptor signaling. Plays also a crucial role in the innate immune response to fungal, bacterial and viral pathogens. It is for instance activated by the membrane lectin CLEC7A. Upon stimulation by fungal proteins, CLEC7A together with SYK activates immune cells inducing the production of ROS. Also activates the inflammasome and NF-kappa-B-mediated transcription of chemokines and cytokines in presence of pathogens. Regulates neutrophil degranulation and phagocytosis through activation of the MAPK signaling cascade (By similarity). Required for the stimulation of neutrophil phagocytosis by IL15 (PubMed:15123770). Also mediates the activation of dendritic cells by cell necrosis stimuli. Also involved in mast cells activation. Involved in interleukin-3/IL3-mediated signaling pathway in basophils (By similarity). Also functions downstream of receptors mediating cell adhesion. Relays for instance, integrin-mediated neutrophils and macrophages activation and P-selectin receptor/SELPG-mediated recruitment of leukocytes to inflammatory loci. Plays also a role in non-immune processes. It is for instance involved in vascular development where it may regulate blood and lymphatic vascular separation. It is also required for osteoclast development and function. Functions in the activation of platelets by collagen, mediating PLCG2 phosphorylation and activation. May be coupled to the collagen receptor by the ITAM domain-containing FCER1G. Also activated by the membrane lectin CLEC1B that is required for activation of platelets by PDPN/podoplanin. Involved in platelet adhesion being activated by ITGB3 engaged by fibrinogen. Together with CEACAM20, enhances production of the cytokine CXCL8/IL-8 via the NFKB pathway and may thus have a role in the intestinal immune response (By similarity).

Cellular Location
Cell membrane. Cytoplasm, cytosol

Tissue Location

Bi-Phospho-Syk(Y525/526) Antibody - Protocols

Provided below are standard protocols that you may find useful for product applications.
Bi-Phospho-Syk(Y525/526) Antibody - Background

Syk is a positive effector of BCR-stimulated responses. This protein couples the B-cell antigen receptor (BCR) to the mobilization of calcium ion either through a phosphoinositide 3-kinase-dependent pathway, when not phosphorylated on tyrosines of the linker region, or through a phospholipase C-gamma-dependent pathway, when phosphorylated on Tyr-342 and Tyr-346. Thus the differential phosphorylation of Syk can determine the pathway by which BCR is coupled to the regulation of intracellular calcium ion.

Bi-Phospho-Syk(Y525/526) Antibody - References

Bi-Phospho-Syk(Y525/526) Antibody - Citations

- Distribution of spleen tyrosine kinase and tau phosphorylated at tyrosine 18 in a mouse model of tauopathy and in the human hippocampus.
- Alzheimer's disease pathological lesions activate the spleen tyrosine kinase.
- The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments.
- CHMP5 controls bone turnover rates by dampening NF-κB activity in osteoclasts.
- Phosphorylated Syk expression is enhanced in Nasu-Hakola disease brains.